《高等数学》课程是高等院校非数学专业一门重要的基础课程,它所提供的数学知识、数学思想和数学方法是学生学习专业课程的重要工具,通过数学教育能够培养学生深入细致的洞察和抽象概括能力、逻辑思维能力,以及严谨的思维和分析判断能力,这些能力不仅是学生进行科学研究所必需,而且具备这种理性思维品格和能力的人才在当今竞争机制的社会里越来越显示出他们的优势。
课程概述
《高等数学》是高等院校的一门重要的公共基础课,也是理工科专业学生必修的一门主干课程。高等数学是许多后续专业课程的基础,学好高等数学可以为学习专业课程提供必要的数学工具和方法。高等数学涉及严密的逻辑推理和抽象思维,通过学习可以提高学生的逻辑思维能力和分析问题的能力。这门课的主题是:函数与极限、导数与微分、积分学、级数、微分方程等。学习这门课可以解决实际问题,培养科学素养。这门课的特色和亮点有理论与实践相结合、多媒体教学、互动式教学等。
课程大纲
- 第七章 向量代数与空间解析几何
- 第一节 向量及其线性运算(1)
- 第一节(2)
- 第二节 数量积 向量积
- 第三节 平面及其方程
- 第四节 空间直线及其方程
- 第五节 曲面及其方程
- 第五节(2)
- 第六节 空间曲线及其方程
- 第八章 多元函数微分法及其应用
- 第一节 多元函数的基本概念视频
- 第二节 偏导数(1)视频
- 第二节(2)视频
- 第三节 全微分 视频
- 第四节 多元复合函数的求导法则(1)视频
- 第四节(2)视频
- 第四节(3)视频
- 第四节(4)视频
- 第五节 隐函数的求导公式 视频
- 第八节 多元函数的极值及其求法 视频
- 第八章 测试题-2022级
- 第九章 重积分
- 第一节 二重积分的概念和性质(1)
- 第一节(2)
- 第二节 二重积分的计算(1)
- 第二节(2)
- 第二节(3)利用极坐标计算二重积分
- 第二节(3)
- 第二节(4)
- 第三节 三重积分(1)
- 第三节(2)
- 第四节 重积分的应用
- 第九章 测试题-2022级
- 第十章 曲线积分与曲面积分
- 第一节 对弧长的曲线积分(1)
- 第一节(2)
- 第一节(3)
- 第一节(4)
- 第二节 对坐标的曲线积分(1)
- 第二节(2)
- 第二节(3)
- 第二节(4)
- 第二节(5)
- 第三节 格林公式及其应用(1)
- 第三节(2)
- 第三节(3)
- 第四节 对面积的曲面积分(1)
- 第四节(2)
- 第五节 对坐标的曲面积分(1)
- 第五节(2)
- 第五节(3)
- 第六节 高斯公式(1)
- 第六节(2)
- 第七节 斯托克斯公式(1)
- 第七节(2)
- 第十一章 无穷级数
- 第一节 常数项级数的概念与性质(1)
- 第一节(2)
- 第二节 常数项级数的审敛法(1)
- 第二节(2)
- 第三节 幂级数(1)
- 第三节(2)
- 第四节 函数展开成幂级数(1)
- 第四节(2)
- 第五节 幂级数在近似计算中的作用
- 第十一章 测试题-2022级
- 第十二章 微分方程与差分方程
- 第一节 微分方程的基本概念
- 第二节 可分离变量的微分方程(1)
- 第二节(2)
- 第三节 齐次微分方程
- 第四节 一阶线性微分方程(1)
- 第四节(2)
- 第五节 可降阶的高阶微分方程
- 第六节 二阶常系数齐次线性微分方程(1)
- 第六节(2)
- 第七节 二阶常系数非齐次线性微分方程(1)
- 第七节(2)
- 第十二章 测试题-2022级
- 2022-2023(2)期末考试试卷-2022级
配套教材
-
高等数学(下册)
第一版
叶永升等 著
人民邮电出版社
参考教材
-
《高等数学》(上、下册)
第七版
同济大学数学系 著
高等教育出版社
-
《数学分析》(上、下册)
第四版
华东师范大学数学系 著
高等教育出版社
5.0
|
共
3
条评价
|
本次开课
查看全部
|
4.7
|
共
14
条评价
|
本次开课
查看全部
|
1
是否需要完成课程所有的作业?
如果你想要获得课程证书,你需要按照课程老师制定的课程大纲和考核标准完成相关作业;如果仅是为了扩充知识并不需要申请证书,可以根据自己的时间与需求自由安排学习计划。
2
课程结束后,还能继续学习课程内容吗?
这将根据课程团队的设置的课程结课设置而定,有的课程将在课程结束后关闭,有的课程允许已选课的用户查看课程内容及历史记录,也有课程可能会对未选课用户开放课程内容。对于结课后仍然开放的课程,在“我的课程”列表里,可以查看课程内容及学习记录。
3
建议使用什么浏览器学习?
为了您顺利地进行课程学习,建议您将浏览器升级到最新版本。建议使用IE10及以上,火狐Firefox浏览器,及谷歌Chrome浏览器。